Sec Hotspot 首页  收藏本站  技术博客  RSS
统计信息
已收录文章数量:8499 篇
已收录公众号数量:89 个
本站文章为爬虫采集,如有侵权请告知
已收录微信公众号
网信中国 区块链大本营 白说区块链 区块链投资家 区块链官微 区块链铅笔Blockchain HACK学习呀 二道情报贩子 合天智汇 小白帽学习之路 小米安全中心 弥天安全实验室 SAINTSEC SecPulse安全脉搏 TideSec安全团队 360安全卫士 游侠安全网 计算机与网络安全 安全祖师爷 安全学习那些事 腾讯安全联合实验室 黑客技术与网络安全 安全圈 腾讯御见威胁情报中心 Python开发者 Python之禅 编程派 Python那些事 Python程序员 安全威胁情报 吾爱破解论坛 行长叠报 安在 i春秋 嘶吼专业版 E安全 MottoIN 网信防务 网安杂谈 数说安全 互联网安全内参 漏洞战争 安全分析与研究 邑安全 ChaMd5安全团队 天融信阿尔法实验室 安全牛 SecWiki 安全学术圈 信安之路 漏洞感知 浅黑科技 Secquan圈子社区 奇安信集团 奇安信 CERT 国舜股份 雷神众测 盘古实验室 美团安全应急响应中心 瓜子安全应急响应中心 顺丰安全应急响应中心 蚂蚁金服安全响应中心 携程安全应急响应中心 滴滴安全应急响应中心 字节跳动安全中心 百度安全应急响应中心 腾讯安全应急响应中心 网易安全应急响应中心 OPPO安全应急响应中心 京东安全应急响应中心 Bypass CNNVD安全动态 安恒应急响应中心 天融信每日安全简报 奇安信威胁情报中心 看雪学院 黑白之道 水滴安全实验室 安全客 木星安全实验室 云鼎实验室 绿盟科技安全预警 白帽汇 深信服千里目安全实验室 腾讯玄武实验室 长亭安全课堂 FreeBuf 绿盟科技 nmask
我们为什么用 Go 编写机器学习架构,却不用 Python?
本文来自公众号:Python那些事   2020.01.19 08:30:11


(点击上方快速关注并设置为星标,一起学Python)

作者 | Caleb Kaiser

译者 | 弯月,责编 | 郭芮

出品 | CSDN(ID:CSDNnews)

“如果你有兴趣成为一名机器学习工程师,那么必须熟练掌握Python—— 但是,如果你对机器学习的基础架构感兴趣,则应该认真考虑Go。

以下为译文:

如今,众所周知Python是机器学习项目中最流行的语言。尽管R、C++ 和Julia等语言都有各自的支持者和使用情况,但Python仍然是使用最普遍的语言,几乎每个主流的机器学习框架都使用了Python。
然而,在我们的Cortex(用于将机器学习模型部署成API的开源平台)代码库中,87.5%的代码都是Go。

Python引以为豪的机器学习算法只是生产机器学习系统的一个组成部分。如果想大规模运行生产机器学习API,你的基础架构需要实现以下功能:
  • 自动缩放,确保流量波动不会影响API。

  • API管理,处理同步API部署。

  • 滚动更新,确保更新模型时不会中断用户服务。

我们构建Cortex的目的是自动化上述所有的基础架构,以及日志记录和成本优化等其他问题。

出于以下原因,我们认为Go才是构建满足上述需求的软件的理想之选。

1、并发对于机器学习的基础架构至关重要

用户可以将许多不同的模型部署成不同的API,并把所有模型都放到同一个Cortex集群中进行管理。Cortex Operator需要通过一些API来管理这些不同的部署,比如:
  • Kubernetes API,Cortex调用这个API在集群上部署模型。

  • 各种AWS API,包括EC2 Auto Scaling、S3、CloudWatch等,Cortex调用这些API来管理AWS上的部署。

用户不会直接与这些API进行交互。Cortex通过程序调用这些API来管理集群、启动部署和监视API。

以高效、可靠的方式交叉调用这些API是一项难题。采用并发的方式处理这些API调用是最为高效的方式,但同时也带来了复杂性,因为我们不得不担心竞争状况等问题。
Go为解决这个问题提供了一个开箱即用的解决方案:Goroutines。
Goroutines是Go以并发的方式执行代码的函数。我们可以另写一篇文章深入探讨Goroutines背后的工作方式,但概括来说,Goroutines是由Go运行时自动管理的轻量级线程。你可以将多个Goroutine放在一个OS线程上,而且如果Goroutine阻塞了OS线程,则Go运行时会自动将其余的Goroutines移到新的OS线程上。
Goroutines还提供了一种名叫“通道”(channel)的功能,你可以利用这个功能在Goroutines之间传递消息,帮助我们调度请求并防止出现竞争状况。
当然,你也可以利用asyncio等最新的工具在Python中实现这些功能,但Go的设计考虑到了这些情况,使用Go可以减轻我们的工作负担。

2、使用Go构建跨平台的CLI更容易

Cortex CLI是一个跨平台工具,用户可以使用这个工具直接从命令行部署模型和管理API。
最初,我们使用Python编写了这个CLI,但事实证明,在多个平台上分发这个CLI太困难了。由于Go可以编译成一个二进制文件(不需要管理依赖),所以可以为我们提供了一个简单的解决方案,帮助我们在平台之间分发CLI,而无需额外的工程工作。
Go编译后的二进制文件与解释型语言相比,其性能优势也很明显。根据计算机基准测试结果,Go的速度远胜Python。
许多其他的基础设施CLI工具也是用Go编写的,这绝非偶然,具体的理由请参照下面的第三点。

3、Go的生态系统非常适合基础设施项目

开源的好处之一在于,你可以向自己欣赏的项目学习。例如,Cortex存在于Kubernetes的生态系统中,而Kubernetes本身也是用Go编写。我们很幸运能够借鉴这个生态系统中许多出色的开源项目,其中包括:
  • kubectl:Kubernetes CLI

  • minikube:一种在本地运行Kubernetes的工具

  • helm:Kubernetes软件包管理工具

  • kops:管理生产Kubernetes的工具

  • eksctl:亚马逊EKS的官方CLI

上述这些工具都是Kubernetes项目,而且都是用Go语言编写的。如果你仔细查看CockroachDB和Hashicorp的基础设施项目(包括Vault、Nomad、Terraform、Consul和Packer),就会发现它们统统是用Go语言编写的。

Go在基础架构领域的流行还有另一个影响,那就是大多数对基础架构感兴趣的工程师都很熟悉Go。所以,很容易吸引到这些工程师。我们公司最优秀的一位工程师就是通过AngelList找到我们的,我们很幸运他找到了我们。

4、Go语言编程是一种享受

我们使用Go构建Cortex的最后一个理由就是,我们很享受Go语言编程。
相对于Python,Go的入门有点艰难。但是,Go的宽容性可以为大型项目带来愉悦感。我们在测试软件上非常严格,但是静态输入和编译(对于初学者来说Go的两大难题)对我们来说就像是防护栏,帮助我们编写(相对而言)没有bug的代码。
你可能会说其他语言有不同的优势,但总的来说,Go能够最大限度地满足我们的技术和美学需求。

5、Python适用于机器学习,而Go适用于基础架构

我们也很喜欢Python,它在Cortex中占有一席之地,尤其是在处理推理方面。
Cortex服务于TensorFlow、PyTorch、scikit-learn以及其他Python模型,这意味着与模型的接口以及推理之前和之后的处理均在Python中完成。虽然Python代码经过打包部署到Docker容器中,但这些容器是由Go编写的代码编排的。
如果你有兴趣成为一名机器学习工程师,那么必须熟练掌握Python。但是,如果你对机器学习的基础架构感兴趣,则应该认真考虑Go。
原文:https://towardsdatascience.com/why-were-writing-machine-learning-infrastructure-in-go-not-python-38d6a37e2d76


(完)


看完本文有收获?请转发分享给更多人
关注「P ython那些事」,做全栈开发工程师
点「在看」的人都变好看了哦